Search Results - nginx

Nginx as a load balancer for Magento

Introduction

During seasonal peaks or as traffic grows, there will be a need to add multiple app servers to your Magento store. A load balancer for Magento becomes essential. We have found that using nginx as a load balancer gives acceptable performance. We have not found many instances where we would recommend a hardware load balancer. Recent tests by nginx confirms this.

We would recommend a different load balancer only for additional features such as autoscaling.

Nginx as a load balancer offers many advantages including

  • uneven upsream servers as nginx can assign weights to each load balancer
  • self healing – takes a upstream server out of a cluster if it stops responding
  • path based load balancing
  • combination of path based and weight based load balancing
  • php upstream servers
  • SSL/TLS termination

This article assumes the process of adding a new app server to a Magento cluster is well understood. Here the focus is on the nginx configuration.

Load Balancer for Magento : Basic architecture

(more…)

Nginx or Apache : Best server for Magento

Introduction

Apache server has been for years been the default http server linux hosts use. However, recently there have been many newer “lighter” http servers. This blog article focuses on Magento hosting. Magento is a php based web eCommerce framework. Nginx requires php-fpm to process php requests. So, this comparison is really apache vs nginx + php-fpm. Apache offers MPM (Multi-Processing Module) configurations pre-fork, worker and event. In this discussion we will use the “event” MPM.
This discussion is very popular. Examples include this. We focus on Magento here.

Key Differences between apache and nginx

There are some differences architecturally that make nginx look slightly better for Magento hosting.
(more…)

Reduce your cloud bill by upto 30%

Cloud costs more than anticipated

While cloud gives flexibility and scaling, cloud costs continue to put pressure on RoI (Return on Investment) calculations for eCommerce stores. Merchants migrating from physical hardware find the cloud costs especially high.

luroConnect recognizes that and offers to reduce cloud hosting bills by upto 30%, offering various strategies to do so.

luroConnect is cloud agnostic

luroConnect deploys on any cloud or physical hardware – as long as the platform is open, allowing RHEL compatible linux to be installed. This allows leveraging the best cost deal you can get from a cloud provider.

This allows our customers to select the best hosting or cloud service they prefer due to reasons like geography, discounts or commitment to a cloud provider.

Here are typical server size and cost for 3 major cloud services.

Provider –> Alibaba AWS GCP
Suggested use Server type Cost ($/month) Server type Cost ($/month) Server type Cost ($/month)
DB server ecs.g6.large (2×8) 47 m5.large (2×8) 74 n1-standard-2 (2×7.5) 60
App server ecs.c6.large (2×4) 39 c5.large (2×4) 62 2×4 custom 45

(Sample pricing as per respective portals)

luroConnect uses open source rather than cloud supported equivalents

All components required to host Magento open source and commerce, are open source. That includes nginx, apache, php, mysql, Redis, rabbit-mq and varnish. While cloud providers offer managed service around a open source or a open source compatible proprietary implementation, there is no need to use them.

luroConnect provides services on open source. Moreover, luroConnect is a “done-for-you” service – updates, configuration changes, etc are done by luroConnect keeping in mind performance and security of the website.

Example AWS pricing difference between RDS and luroConnect managed Percona mysql

Instance Disk size Provisioned IOPS Cost
($/month)
db.m5.large (2×8) 100GB 1500 347
m5.large (2×8) 100GB 1500 189

(Mumbai Region as per AWS simple monthly calculator)

luroConnect keeps up with technology to help reduce costs

luroConnect has the capability of building from open source – not just use what is available. This gives us the ability to keep up with technology, especially when it comes to more performant and / or cost saving to our customers.

A prime example of cost saving is use of AWS ARM (a1.large) processors for our nginx & varnish instances – the luroConnect/Edge. a1.large is 40% cheaper than c5.large with the same number of cores and memory.

AWS pricing for different instance types

Instance Processor Cost
($/month)
a1.large (2×4) AWS Graviton 38
c5.large (2×4) Intel 62
m5a.large (2×8) AMD 41

(Mumbai Region as per AWS simple monthly calculator)

As AWS releases Graviton2 ARM processors which are benchmarked by AWS to be upto 25% faster and yet 25% cheaper, luroConnect will release “luroConnect/Edge” and other components on the new AWS M6G, C6G and R6G instances.

luroConnect manages the infrastructure at the application level

Managing infrastructure is not your headache anymore – with luroConnect, your application is fully managed with proactive monitoring and 24×7 service. Features like our cloud control panel that allows you to run Magento indexing, deploy code and perform other activities that required to login to the production server, reduce your cost of running operations.

Conclusion

luroConnect’s investment in software and technology works for its merchant customers, improving RoI of their online business.

If you are interested in reducing your cloud costs like the one below, signup for a free consultation.

Many times, when your hosting service reports that you are running out of CPU or memory, they suggest you take a higher hosting plan. This results in designing for peak requirement. A large AWS instance 5x and above can almost always be tuned down with a scalable architecture. luroConnect’s inherent scalable architecture allows such cost reductions even without autoscale. For larger instances it makes sense to use autoscale.

luroConnect also believes in tuning caches – a key component to help reduce hosting costs. With our advanced tracking and healing, we continuously tune caches for optimal performance and hosting costs.

Free as in freedom, not free beer!

Introduction

The open source community has had this saying for long, though there are many, including myself, who do not understand what this difference means.

With recent changes to open source license agreements, this difference has come to the fore. For example, changes in the open source licensing of redis and mongodb has restricted how AWS and other cloud providers can conduct their business. Directly relevant to eCommerce merchants is the effect to open source Magento since Adobe’s acquisition of Magento and the path that has been followed

Magento Open Source vs Enterprise

Adobe’s business reason to have Magento is (in my opinion) to complete their offering. Adobe has seen a huge, public and successful transition from their traditional business of one-time purchase of packaged software to a subscription and even a SaaS model. With the acquisition of Magento and the Commerce Cloud licensing model, Adobe clearly thinks Magento should be packaged with hosting – hence the word Cloud in their offering and their pricing of the Enterprise license that includes cloud hosting. This transition is seen in SAP’s hybris commerce offering that includes hosting to make SAP Commerce Cloud. Unlike SAP hybris though, Magento is open source.

If you accept the Adobe Magento Commerce Cloud offering, you submit to the fixed set of features that are offered by their cloud or subscribe to a SaaS service for integration – though sometimes even that requires qualification or may not be possible.

For example, if you want PWA, you are limited and have to wait for the PWA Studio. If you want an improved search interface, you are limited to their choice. Similarly, for CDN, image optimization and Web Application Firewall, you are limited to Fastly, Adobe’s choice in the matter.

Or, perhaps, you use a plugin that is connected to a SaaS service.

When a Magento website is self-hosted though, the choice was to install a plugin or enhance the code that may require a service which has to be hosted. In the examples above, you may want to use vue-storefront or use one of many systems for search or use ImageMagick as an image optimization solution.

From Free Beer to Freedom!

The earlier licensing model of Magento pushed the decision to a “board level” – companies like ours always take the supported version. Mostly the open source version of Magento was attractive to those who were attracted by the “free beer”.

However, now the decision is that of freedom – since the paid version comes with restrictions.

If you feel guilty of being a taker of open source, you can sponsor community commits back to the open source Magento. The community participation is not negligible. Matt Asay of Adobe suggests it may be as high as 50% in this article.

(Indeed there are community participants who think Adobe is gaining from open source contributions, but that is a different blog article).

Shameless plug!

Full stack managed hosting support from luroConnect, gives you the benefit of supported opensource and the flexibility to build your own solution around it. The entire stack is based open source – from linux to Magento – including nginx, ModSecurity, redis, elasticsearch, sphinx and ofcourse mysql. (We relunctantly also allow ioncube encrypted plugins as well). Coupled with a release process from your git. Hosted on any cloud or open hosting providers – in the age of Uber you don’t need to own your data centers. Our multi-layered security approach and proactive monitoring comes standard. With additional features like a disaster recovery plan, image optimization, peep-hole maintenance and a dashboard to monitor and control key tasks such as code deployment or indexing, we bring peace-of-mind to Magento hosting. Check out our pricing and you can connect with us.

Magento Open Source vs Commerce Cloud

Magento Commerce Cloud does offer additional features. See alongside (zoom for a larger view) for a comparison taken from magento.com. Some key features like WYSIWYG editor will never be released in open source.

However, not everyone needs all of the features and some of these features are available from other plugin vendors or custom development from the many certified and non-certified agencies.

Infact, even if you are a Commerce Cloud customer, you will need customizations and potentially more plugins and even 3rdparty SaaS services to have a fully working store.

Conclusion

Magento Open Source is now a very viable option for all stores – brands and high volume stores included. With many options to customize and integrate, you have the freedom to make your own best of breed solution and not be restricted by the Adobe environment. With Managed hosting service you can get optimized and scalable websites.

Website Security (Magento & WordPress)

luroConnect’s approach to security is to take a holistic view. This leads us to a multi-layered security principle. Components of which are

  • Web Application Firewall – built into our nginx, WAF filters out traffic after examining its content. SQL and other injection can be best blocked here. However, WAF needs tuning on a per site basis – to reduce false positives. luroConnect includes custom rulesets tuned for each website by our WAF experts.
  • Rate limit and IP address blacklisting.
  • BOT blocker – filtered using the HTTP User Agent field.
  • Periodic admin user role and password change reminder
  • Blocking IP based on failed admin login attempts
  • Protecting admin login with HTTP password
  • File system security
  • Ensuring uploaded malware is never executed
  • Code deployment security

luroConnect understands a backup is useless until tested for restore. Our disaster recovery plan gives access to the disaster recovery server at all times. With a max of 20 minutes behind the live data and ability to scale up servers in 15 minutes should a need be, it is a must-have for all production servers. Read more about our DR Plan here.

We routinely blog about security in Magento and WordPress.

We can analyze your site for free

Schedule a call

Not happy with your website performance and want an expert to look at it?

  • We will analyze your site using public information.
  • We will ask you to give us a 1 day web server log file.
  • We will try to identify what steps if any you should take to improve your sites performance goals.

Website Scale (Magento & WordPress)

As campaigns and returning customers drive up website traffic, scale becomes important. Difference between understanding performance and scale is important and an analogy will help. While better performance is like a faster car, scale is like a better highway. On the cloud, it is easier to add lanes and remove them.

While AWS and other cloud auto scaling is huge win and almost a necessity for some websites, cold start issues – time it takes for new resources to be ready and available – make it one of many strategies.

luroConnect offers many strategies to scale, depending on the exact situation. To start with, the architecture allows many strategies to be applied. At the heart there is a path based load balancer – our nginx load balancer that can direct traffic to app servers based on URL.

Strategies include

Warm servers – useful if a campaign is known to drive traffic. A smaller warm server is kept standby to take additional traffic. These are with knowledge of campaigns to ensure expenses are kept in control.

Time based servers – for websites with high daytime admin usage, additional server is turned on to take admin traffic during working hours. Off hours admin traffic is served from the main app servers. This strategy can be applied to other time based known traffic patterns.

Checkout servers if campaigns drive huge browsing traffic, one or more checkout servers will take traffic from customers who have started the checkout flow.

Other things that help improve scale

We like to ensure caches are warm. Periodically and especially during cache clear events, our Smart Cache Warmer ensures most likely pages are in cache reducing the chances of a real user getting a cache miss.

Our 0-downtime code deploy ensures code release while the website is live. (0-downtime can only be achieved if there are no database changes in Magento). Scheduled deploy can also be used to deploy code automatically on low traffic times.

Interested in talking to us about how your website can scale better? Schedule a time below and we can analyze your website for free.

We can analyze your site for free

Schedule a call

Not happy with your website performance and want an expert to look at it?

  • We will analyze your site using public information.
  • We will ask you to give us a 1 day web server log file.
  • We will try to identify what steps if any you should take to improve your sites performance goals.

404 when moving to Magento 2

When migrating platforms for example from WooCommerce to Magento or from Magento 1 to Magento 2, it is imperative that we move all URLs  to ensure proper SEO authority is retained after the move as well as real users get a smooth Customer Experience (CX).

If it is not possible to maintain the same URLs, ensure redirects are made. This is especially true of a move from WooCommerce and also true when as part of the move the store is reorganized. When migrating data, an automated custom URL redirect process is recommended.

In spite of the best planning and intentions it is likely some URLs may be missed and redirects may not be setup.

Failing to do so has 2 negative effects

  • BOTS, especially Google may visit the new site with the older URL and receive a 404. This can reduce your site rating on Google.
  • Users that may have bookmarked or use browser history may get a 404 and get a bad CX resulting in visitors bouncing and reducing brand value.

Google Analytics does not show 404s. Google search console may show if the count is high. Neither of these is a reliable source to know what was missed.

Only the server knows for sure it severed a 404 and would have logged it in the apache or nginx access and/or error log files. On a new migration we recommend automating a 404 report from the log file, atleast once a day.

If using our luroConnect / Edge product, the dashboard can be used to setup a real-time alert for any 404 returned. This can then be actioned by developers or the agency to include a redirect.

Watch our webinar on performance and scaling in Magento

Its free!

Using analogy to vehicular traffic we explain performance and scaling in Magento.
Key takeaways

  • Know how to compare hosting options
  • Importance of good code
  • How to scale
  • Tuning Magento

We can analyze your site for free

Schedule a call

Not happy with your website performance and want an expert to look at it?

  • We will analyze your site using public information.
  • We will ask you to give us a 1 day web server log file.
  • We will try to identify what steps if any you should take to improve your sites performance goals.

Analysis of recent website security breaches

Introduction

Recent high profile website security breaches are nice to study to ensure you have defense mechanisms in place.
We strongly believe in “defense in depth” or “multi layered security”. This includes

  • Defense in Multiple Places. Meaning that an organization need to deploy security mechanisms in different places.
  • Layered Defenses. This means to have many layers of defense.

Let us analyze these hacks and lessons we can learn.

Analysis of 4 hacks to known websites

britishairways.com does not even store credit cards!

British Airways eCommerce site britishairways.com reported leak of 380,000 credit cards.

Let us first look at their privacy policy

Under “How we secure your payment information when you book online” it mentions

  • All of your personal information is encrypted as it travels over the Internet, to and from www.ba.com. When information is encrypted, it is scrambled between your computer and our server. The information is only unscrambled when it safely reaches us. It’s fast and safe, and it ensures that your personal information cannot be read by anyone else.
  • When you send your personal details to us, none of the information is stored on the website, it is passed straight back to our secure servers at our Heathrow headquarters, where it only exists as part of the record of your transaction.

Factually, what does “none of the information is stored on the website” mean?

Also based on the clarification given by BA we can assume they do not store credit card information along with the customer data.

The breach :

  • Magecart created a secure fake site baways.com which was used to store the siphoned credit card information
  • As is typical of magecart they broke into the britishairways.com servers, possibly through an admin interface to change a javascript file (modernizr.js), an open source library used on the website. Magecart inserted a short javascript that would monitor keystrokes and report back to baways.com that they owned.

That clearly indicates there was a breach. However, if one assumes the main servers of britishairways.com are well protected, there can be 2 possible options of breakin

  • It is possible in the website to use a administrative interface to change or upload a javascript file that gets used in the build
  • Or, they were able to gain access to the build process of britishairways website and ensure a modified version of the required javascript file was inserted.

What lessons can we learn?

  1. Admin interface to either update HTML or javascript code directly is a bad idea. If your environment has that convenience, it is important to protect it. Protection can be IP based so only certain IPs can access or be hidden in general and unlocked if needed.
    It is also important to periodically check if HTML or JavaScript stored in the database is clean. For example do not allow any JavaScript tag in the product description.

Live site should be hosted to ensure directories from where any code is executed is not allowed to be written to.

The breach :

Due to a vulnerability in “Apache Struts” that was exploited, access to execute any shell script was given and the hacker was able to download the entire credit history data stored.

Exact vulnerability in Apache struts – “incorrect exception handling and error-message generation during file-upload attempts, which allows remote attackers to execute arbitrary commands via a crafted Content-Type, Content-Disposition, or Content-Length HTTP header”

Patch was available but was not implemented on the server

What lessons can we learn?

  • While the obvious lesson is to update when patches are available, we think that it is not always possible or there will atleast be a lag between the patch being released and the website being patched.
  • A web user – the user that the web application is running as – should have a need to know access permissions.
  • Web root should be clean – do not have temporary folders or files that are not required – or limit permissions of the web user.
  • Monitor network activity for any unusual pattern – download of 143m records should not go unnoticed.
  • Use reverse proxy as we web server (like nginx) and do not expose the actual application servers to the internet. Infact, ensure the web server is a separate container or instance that only serves static content and passes upstream requests to the application server.

The breach :

As per facebook …

The vulnerability was the result of a complex interaction of three distinct software bugs and it impacted “View As,” a feature that lets people see what their own profile looks like to someone else. It allowed attackers to steal Facebook access tokens, which they could then use to take over people’s accounts. Access tokens are the equivalent of digital keys that keep people logged in to Facebook so they don’t need to re-enter their password every time they use the app.

First, the attackers already controlled a set of accounts, which were connected to Facebook friends. They used an automated technique to move from account to account so they could steal the access tokens of those friends, and for friends of those friends, and so on, totaling about 400,000 people. In the process, however, this technique automatically loaded those accounts’ Facebook profiles, mirroring what these 400,000 people would have seen when looking at their own profiles. That includes posts on their timelines, their lists of friends, Groups they are members of, and the names of recent Messenger conversations. Message content was not available to the attackers, with one exception…

The attackers used a portion of these 400,000 people’s lists of friends to steal access tokens for about 30 million people

What lessons can we learn?

  • Do not generic and hidden tokens that give cross access to APIs. Instead, each token should have a ACL (Access Control List) and select the minimum ACL required.
  • While this is particularly true for web services, in eCommerce websites payment gateway tokens should not be sent to frontend until required, even in hidden fields.

The breach :

  • On the evening of Saturday, June 23rd (2018), we received notice from our customers at Ticketmaster that the personal data of their users had been compromised. Upon further investigation by both parties, it was confirmed that the source of the data breach was a single piece of JavaScript code, customized by Inbenta to serve Ticketmaster’s particular requests. The attacker(s) located, modified, and used this customized script to extract the payment information of Ticketmaster customers processed between February and June 2018.
  • After a careful analysis of all clues and snapshots from our systems, the technical team at Inbenta discovered that the script had been implemented on the payment page. We were unaware of this, and would have advised against doing so had we known, as it presents a point of vulnerability.
  • Inbenta has conducted a detailed analysis of all the file systems used for development and production systems, thoroughly analysing any difference between the original source code and the version in the production environment. We can confirm that just 3 files were altered that affected 3 specific websites for Ticketmaster.
  • One of the advantages of hosting scripts at Inbenta’s servers that are embedded in our customer’s website is the flexibility that Inbenta can offer to our customers to have new functionalities or updates up and running quickly. The downside is that we cannot monitor which web pages our customers are embedding those scripts on and therefore we cannot prevent customers putting them in pages that collect sensitive information.

What lessons can we learn?

  • Avoid including 3rd party libraries from 3rd party servers. Implementing this is a matter of size sometimes – if the vendor is bigger and changes the content often, this cannot be done. However, there are many instances that can be avoided.
  • Ensure version in original source code and that in the production environment are the same, else there has been a breach.
  • Production site should be hosted to ensure directories from where any code is executed is not allowed to be written to.
  • Secure the CI/CD process so files in version control are not modified on the way. Some need to be compiled / compressed, etc but the possibility of inserting code has to be prevented. Securing CI/CD process is important.

Conclusion : Do not take Security for granted

Just having a SSL or a WAF is not enough security. Even having PCI certification is not enough security.

Instead, building security in mulitple layers, following first principles of security such as “need to access” and monitoring are needed. Since we cannot assume there is full proof security, we have to actively both prevent and know early if there is a breach.

To secure your Magento website, refer our article “Enterprise Grade Security For Your Magento Website

We can analyze your site for free

Schedule a call

Not happy with your website performance and want an expert to look at it?

  • We will analyze your site using public information.
  • We will ask you to give us a 1 day web server log file.
  • We will try to identify what steps if any you should take to improve your sites performance goals.

Agencies, come partner with us!

Development, SEO, Marketing, Site Speed – you do it all!

As a web agency, you have to wear multiple hats for your customers. Customers are looking for a one stop shop for their eCommerce needs for example. Development, SEO, marketing, optimized hosting, etc.

You are also sucked into all activities a customer wants, mostly because you want your customers to succeed, or maybe out of fear of losing. Some of these areas are core to you, some not so core. You build your skills, your people and it offers growth to you.

The evolving customer need – not just 24/7

Customer needs keep evolving. One prime example is in the choice of platform. With popularity of SaaS platforms like shopify, agencies are stretched to help a customer decide the platform and deliver on it. Sure there are clear cases where shopify is all the customer may need, but the border areas abound. Will the platform be the best choice now and in the future? In the future what type of integration and customization will the customer need?

SaaS offers lower complexity, an easier onboarding and a lower initial TCO (Total Cost of Ownership). Instead, Magento offers flexibility, but adds complexity to run the store – specifically related to hosting and maintenance. For example, customers never have to worry about site speed with SaaS while that is a specialty in itself for Magento.

Uptime is not all that a customer needs – indeed uptime is expected. Your customers want you to go beyond and deliver the best user experience to their visitors – so their brand value is enhanced.

Presenting, luroConnect for Magento & WordPress

A multi-cloud hosting stack for Magento & WordPress, accompanied by a 24×7 service, backed by realtime analytics and alerting to ensure a SaaS-like smooth experience to the merchant.

We go beyond

With features for agency like

  • Devops – we act like your extended team. Containerize development environment, manage staging & code deployment process.
  • Magento, WordPress, Headless & PWA
  • lurocomnect / Insights dashboard to help you monitor each customer’s website in a single interface

Features for your customers to help you deliver the high quality digital experience you have developed

  • Multi-cloud support – let the customer decide or give a variety of options for hosting and CDN.
  • Highly secure hosting stack : Web Application Firewall (WAF), a IP and BOT blocker, a load balancer all integrated into the nginx web server.
  • An asynchronous Image Optimization that can be used to generate retina and high pixel ratio mobile displays,
  • zero-downtime deploy
  • Disaster Recovery Plan – data replicated every 10 minutes to another cloud platform, giving a 15 minute time to switch with a max of 20 minute loss of data.

Come partner with us!

If you are a agency developing Magento or WordPress websites, we offer you a partnership that allows you to offer your customers the flexibility of owning a platform at the convenience of SaaS. Our rich stack continues to evolve – with a set of features already built and more on the way. Layered so you can charge your customers per service. For example,

  • Disaster recover plan of a max of 20 minute loss of data and max of 1/2 hour time to bring up the secondary setup on another cloud provider, in case of disaster.
  • Image optimization service that can optimize images automatically on the server
  • Custom branded luroConnect / Insight that gives response time analytics, alarms or view status of disk, etc.
  • Custom branded control panel that allows a set of action your customer or your engineers can take to actions such as deploying code to clearing CDN.

You also get our devops services for helping your developers go from “works for me” to “deployed to live” in an orderly fashion, allowing them to do best at what they do – develop.

Who are we?

Our CEO, Mr Pradip Shah is a 30+ years experienced techy and a frequent speaker.

Using open source technologies such a nginx, php-fpm, we have defined a multi cloud platform scalable architecture.

Our devops teams work on improving developer and operations productivity –  using bitbucket pipelines to build M2 code, ready to deploy or a self healing cache configurator, a smart cache warmer, etc.

Our cloud engineering team develops site monitoring and cloud control technology to give a dashboard with controls like one click deploy.

Interested?

Email us at partner@luroconnect.com and we will get back to you. Or, if you prefer, send us a chat message using the box on your right. Please remember to give us your email / phone to contact you.

The DIY Guide to Magento Hosting

Introduction

Quite often we depend on the hosting provider to give us a fast website. But with the availability of affordable hosting options in terms of VPC that requires some DIY skills to setup.

In this DIY guide we help you setup a high performance Magento hosting environment. This guide includes configurations and tips. As with any DIY, you need to have some knowledge and tools. We expect that you have a basic working knowledge of linux and its commands, access to root, ability to install standard packages  as well use of a text editor in linux – such as vim. An idea of users, uids, groups, gids and process will be useful for trouble shooting if you need.

Much like getting a car with a good engine is only the starting point if you love fast cars, so is a good server if you want great page load times. A good transmission would be the next thing you need to look for. Transmission in hosting is equivalent to the components of hosting and how they communicate.

Choosing a hosting provider

All hosting providers claim best hardware but sell you on price. How do you compare one from the other? Knowing how they work and some tests may help!

How clouds and virtualization work : Todays virtualization technology allows hosting providers to share a larger computing resource they own amongst many customers. The technology also allows overcommit – much like an airline that would overbook seats in the hope someone cancels, a hosting provider can overcommit resources such as CPU in the hope that not all customers would use all CPUs given at the same time. However, unlike an airline, virtualization technology can deteriorate performance without failing.

Testing the resources : We have a quick way to test the quality of your hardware. We measure the speed of RAM and disk in these simple tests. In each case we write data serially to a chunk of memory or disk and measure the performance. Warning : Free memory and disk are required for the test.

The memory test

(tempDir=`mktemp -d -t linux-benchmark-XXX`; mount -t tmpfs -o size=128m $tempDir $tempDir; (dd if=/dev/zero of=$tempDir/test_ bs=1M count=128 conv=fdatasync &&rm -f $tempDir/test_)

The disk test
This test gives you a momentary result. Run the test multiple times to get a good average. Anything below 150Mbps is slow. A typically SSD disk should give about 450Mbps, good ones above 700Mbps.

tempFile=<drive>/disktest; dd if=/dev/zero of=$tempFile bs=1M count=1024 conv=sync oflag=direct; rm -f $tempFile

The architecture

We will assume a simple architecture – all services on the same server. This is for simplicity and we have seen it to work well with sites on physical hardware with rather consistent traffic in a 24 hour period.

There can be alternate architectures

  • separate db server
  • multiple app servers – service all traffic in front of a load balancer
  • separate app server – say for admin URLs with a path based load balancer

Each of these bring additional complexities in configurations. Please use the comments section below if you have a more complex architecture.

The nginx web server

Note : We use nginx – read our blog article on why we prefer nginx over apache.
The basic nginx configuration for Magento is available
Click here.

## define both backends
## upstream  socketbackend{
  server unix:/var/run/php-fcgi-www.sock;
}
upstream tcpbackend{
  server 127.0.0.1:9000;
}
server {
  listen 443 ssl http2;
  server_name example.com www.example.com;
  root /home/example/www;
  ssl on;
  ssl_certificate       /etc/pki/tls/certs/example_certs/www_example.com.crt;
  ssl_certificate_key   /etc/pki/tls/certs/example_certs/www_example_com.key;
  ssl_protocols         TLSv1 TLSv1.1 TLSv1.2;
  ssl_prefer_server_ciphers on;

  ssl_ciphers "EECDH+AESGCM:EDH+AESGCM:ECDHE-RSA-AES128-GCM-SHA256:AES256+EECDH:DHE-RSA-AES128-GCM-SHA256:AES256+EDH:ECDHE-RSA-AES256-GCM-SHA384:DHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-SHA384:ECDHE-RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA:ECDHE-RSA-AES128-SHA:DHE-RSA-AES256-SHA256:DHE-RSA-AES128-SHA256:DHE-RSA-AES256-SHA:DHE-RSA-AES128-SHA:ECDHE-RSA-DES-CBC3-SHA:EDH-RSA-DES-CBC3-SHA:AES256-GCM-SHA384:AES128-GCM-SHA256:AES256-SHA256:AES128-SHA256:AES256-SHA:AES128-SHA:DES-CBC3-SHA:HIGH:!aNULL:!eNULL:!EXPORT:!DES:!MD5:!PSK:!RC4";  
  ssl_dhparam /etc/nginx/dhparams.pem;

  access_log /var/log/nginx/example.access.log;
  error_log /var/log/nginx/example.error.log;
  #/* deny should come first */
  location ^~ /app/ { deny all; }
  location ^~ /bin/ { deny all; }
  location ^~ /lib/ { deny all; }
  location ^~ /media/downloadable/ { deny all; }
  location ^~ /dev/ { deny all; }
  location ^~ /vendor/ { deny all; }
  location ^~ /update/ { deny all; }
  location ^~ /var/ { deny all; }
  location ^~ /downloader/ { deny all; }
  location ^~ /admin/ { deny all; }
  location ^~ /phpserver/ { deny all; }
  location ^~ /setup/ { deny all; }
  location ^~ /run/ { deny all; }
  #/* system . files */
  location /. {
    return 404;
  }
  #/* main php handler */
  location / {
    index index.php index.html;
    try_files $uri $uri/ @handler;
  }
  #/* set long expiry for static content. Update types as needed */
    location ~* \.(jpg|jpeg|gif|png|css|js|ico|swf|woff2|svg|TTF)$ {
    access_log off;
    log_not_found off;
    expires 360d;
  }
  #/* directories where you do not want php to be executed from */
  location ~* /(images|cache|media|skin|js|uploads|logs|tmp)/.*\.(php|pl|py|jsp|asp|sh|cgi)$ {
    return 403;
  }

  #/* we you need setup remove from deny list */
  location /setup {
    try_files $uri $uri/ @setuphandler;
  }
  # Rewrite Setup's Internal Requests
    location @setuphandler {
    rewrite /setup /setup/index.php;
  }
  # Rewrite Internal Requests
  location @handler {
    rewrite / /index.php;
  }
  location /pub/static {
    try_files $uri $uri/ @static;
  }
  location @static {
    rewrite ^/pub/static/(.*)$ /pub/static.php?resource=$1? last;
  }
  location ~ \.php$ { ## Execute PHP scripts
    try_files $uri =404;
    expires off;
    fastcgi_pass socketbackend;
    #fastcgi_pass tcpbackend;
    fastcgi_read_timeout 1s;
    fastcgi_param HTTPS $fastcgi_https;
    fastcgi_index index.php;
    fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name;
    include fastcgi_params;
  }

Php-fpm – the php interpreter

An important factor is to not overcrowd the CPU and memory you may have, as the default configuration does. The main configuration file is www.conf and specifically the section on servers.
Click here is a production php-fpm.d/www.conf file

; Start a new pool named 'www'.
[www]

; Unix user/group of processes
; luroConnect : 2-user system requires the php-fpm and nginx processes run as the same user
; give the nginx group read only access to the hosting directory typically in /home//www
; if a directory needs to be written into by php (such as upload, consider media, var) those directories
; need write permission for groups
user = nginx
group = nginx

; The address on which to accept FastCGI requests.
; Valid syntaxes are:
;   'ip.add.re.ss:port'    - to listen on a TCP socket to a specific IPv4 address on
;                            a specific port;
;   '[ip:6:addr:ess]:port' - to listen on a TCP socket to a specific IPv6 address on
;                            a specific port;
;   'port'                 - to listen on a TCP socket to all addresses
;                            (IPv6 and IPv4-mapped) on a specific port;
;   '/path/to/unix/socket' - to listen on a unix socket.
; Note: This value is mandatory.
; luroConnect : Match listen to the value in nginx. Single server system can use socket
; listen = 9000
listen /var/run/php-fcgi-www.sock

; Set listen(2) backlog.
; Default Value: 511 (-1 on FreeBSD and OpenBSD)
;listen.backlog = 511

; Set permissions for unix socket, if one is used. In Linux, read/write
; permissions must be set in order to allow connections from a web server. Many
; BSD-derived systems allow connections regardless of permissions.
; Default Values: user and group are set as the running user
;                 mode is set to 0660
;listen.owner = nobody
;listen.group = nobody
;listen.mode = 0660
; When POSIX Access Control Lists are supported you can set them using
; these options, value is a comma separated list of user/group names.
; When set, listen.owner and listen.group are ignored
;listen.acl_users =
;listen.acl_groups =

; List of addresses (IPv4/IPv6) of FastCGI clients which are allowed to connect.
; Equivalent to the FCGI_WEB_SERVER_ADDRS environment variable in the original
; PHP FCGI (5.2.2+). Makes sense only with a tcp listening socket. Each address
; must be separated by a comma. If this value is left blank, connections will be
; accepted from any ip address.
; Default Value: any
; 
;listen.allowed_clients = 127.0.0.1

; Specify the nice(2) priority to apply to the pool processes (only if set)
; The value can vary from -19 (highest priority) to 20 (lower priority)
; Note: - It will only work if the FPM master process is launched as root
;       - The pool processes will inherit the master process priority
;         unless it specified otherwise
; Default Value: no set
; process.priority = -19

; Choose how the process manager will control the number of child processes.
; Possible Values:
;   static  - a fixed number (pm.max_children) of child processes;
;   dynamic - the number of child processes are set dynamically based on the
;             following directives. With this process management, there will be
;             always at least 1 children.
;             pm.max_children      - the maximum number of children that can
;                                    be alive at the same time.
;             pm.start_servers     - the number of children created on startup.
;             pm.min_spare_servers - the minimum number of children in 'idle'
;                                    state (waiting to process). If the number
;                                    of 'idle' processes is less than this
;                                    number then some children will be created.
;             pm.max_spare_servers - the maximum number of children in 'idle'
;                                    state (waiting to process). If the number
;                                    of 'idle' processes is greater than this
;                                    number then some children will be killed.
;  ondemand - no children are created at startup. Children will be forked when
;             new requests will connect. The following parameter are used:
;             pm.max_children           - the maximum number of children that
;                                         can be alive at the same time.
;             pm.process_idle_timeout   - The number of seconds after which
;                                         an idle process will be killed.
; Note: This value is mandatory.

; luroConenct : We set to static so we can dedicate CPU resources to php
; Create separate pools for processing URLs with different levels of CPU utilization
; For example if you have URLs that do a CURL,  make a curl pool. These will consume less CPU.
pm = static

; The number of child processes to be created when pm is set to 'static' and the
; maximum number of child processes when pm is set to 'dynamic' or 'ondemand'.
; This value sets the limit on the number of simultaneous requests that will be
; served. Equivalent to the ApacheMaxClients directive with mpm_prefork.
; Equivalent to the PHP_FCGI_CHILDREN environment variable in the original PHP
; CGI.
; Note: Used when pm is set to 'static', 'dynamic' or 'ondemand'
; Note: This value is mandatory.
; luroConnect : we set it to slightly more than the cores available for php.
; 5 is ideal for a 4 cores reserved for php.
pm.max_children = 5

; The number of child processes created on startup.
; Note: Used only when pm is set to 'dynamic'
; Default Value: min_spare_servers + (max_spare_servers - min_spare_servers) / 2
pm.start_servers = 5

; The desired minimum number of idle server processes.
; Note: Used only when pm is set to 'dynamic'
; Note: Mandatory when pm is set to 'dynamic'
pm.min_spare_servers = 5

; The desired maximum number of idle server processes.
; Note: Used only when pm is set to 'dynamic'
; Note: Mandatory when pm is set to 'dynamic'
pm.max_spare_servers = 35

; The number of seconds after which an idle process will be killed.
; Note: Used only when pm is set to 'ondemand'
; Default Value: 10s
;pm.process_idle_timeout = 10s;

; The number of requests each child process should execute before respawning.
; This can be useful to work around memory leaks in 3rd party libraries. For
; endless request processing specify '0'. Equivalent to PHP_FCGI_MAX_REQUESTS.
; Default Value: 0
; luroConnect : Magento and wordpress need a limit as inadvertently there are memory leaks
; set this number based on hits and the avg process size that is available through the status page
pm.max_requests = 500

; The URI to view the FPM status page. If this value is not set, no URI will be
; recognized as a status page. It shows the following informations:
;   pool                 - the name of the pool;
;   process manager      - static, dynamic or ondemand;
;   start time           - the date and time FPM has started;
;   start since          - number of seconds since FPM has started;
;   accepted conn        - the number of request accepted by the pool;
;   listen queue         - the number of request in the queue of pending
;                          connections (see backlog in listen(2));
;   max listen queue     - the maximum number of requests in the queue
;                          of pending connections since FPM has started;
;   listen queue len     - the size of the socket queue of pending connections;
;   idle processes       - the number of idle processes;
;   active processes     - the number of active processes;
;   total processes      - the number of idle + active processes;
;   max active processes - the maximum number of active processes since FPM
;                          has started;
;   max children reached - number of times, the process limit has been reached,
;                          when pm tries to start more children (works only for
;                          pm 'dynamic' and 'ondemand');
; Value are updated in real time.
; Example output:
;   pool:                 www
;   process manager:      static
;   start time:           01/Jul/2011:17:53:49 +0200
;   start since:          62636
;   accepted conn:        190460
;   listen queue:         0
;   max listen queue:     1
;   listen queue len:     42
;   idle processes:       4
;   active processes:     11
;   total processes:      15
;   max active processes: 12
;   max children reached: 0
;
; By default the status page output is formatted as text/plain. Passing either
; 'html', 'xml' or 'json' in the query string will return the corresponding
; output syntax. Example:
;   http://www.foo.bar/status
;   http://www.foo.bar/status?json
;   http://www.foo.bar/status?html
;   http://www.foo.bar/status?xml
;
; By default the status page only outputs short status. Passing 'full' in the
; query string will also return status for each pool process.
; Example:
;   http://www.foo.bar/status?full
;   http://www.foo.bar/status?json&full
;   http://www.foo.bar/status?html&full
;   http://www.foo.bar/status?xml&full
; The Full status returns for each process:
;   pid                  - the PID of the process;
;   state                - the state of the process (Idle, Running, ...);
;   start time           - the date and time the process has started;
;   start since          - the number of seconds since the process has started;
;   requests             - the number of requests the process has served;
;   request duration     - the duration in µs of the requests;
;   request method       - the request method (GET, POST, ...);
;   request URI          - the request URI with the query string;
;   content length       - the content length of the request (only with POST);
;   user                 - the user (PHP_AUTH_USER) (or '-' if not set);
;   script               - the main script called (or '-' if not set);
;   last request cpu     - the %cpu the last request consumed
;                          it's always 0 if the process is not in Idle state
;                          because CPU calculation is done when the request
;                          processing has terminated;
;   last request memory  - the max amount of memory the last request consumed
;                          it's always 0 if the process is not in Idle state
;                          because memory calculation is done when the request
;                          processing has terminated;
; If the process is in Idle state, then informations are related to the
; last request the process has served. Otherwise informations are related to
; the current request being served.
; Example output:
;   ************************
;   pid:                  31330
;   state:                Running
;   start time:           01/Jul/2011:17:53:49 +0200
;   start since:          63087
;   requests:             12808
;   request duration:     1250261
;   request method:       GET
;   request URI:          /test_mem.php?N=10000
;   content length:       0
;   user:                 -
;   script:               /home/fat/web/docs/php/test_mem.php
;   last request cpu:     0.00
;   last request memory:  0
;
; Note: There is a real-time FPM status monitoring sample web page available
;       It's available in: @EXPANDED_DATADIR@/fpm/status.html
;
; Note: The value must start with a leading slash (/). The value can be
;       anything, but it may not be a good idea to use the .php extension or it
;       may conflict with a real PHP file.
; Default Value: not set
pm.status_path = /status

; The ping URI to call the monitoring page of FPM. If this value is not set, no
; URI will be recognized as a ping page. This could be used to test from outside
; that FPM is alive and responding, or to
; - create a graph of FPM availability (rrd or such);
; - remove a server from a group if it is not responding (load balancing);
; - trigger alerts for the operating team (24/7).
; Note: The value must start with a leading slash (/). The value can be
;       anything, but it may not be a good idea to use the .php extension or it
;       may conflict with a real PHP file.
; Default Value: not set
ping.path = /ping

; This directive may be used to customize the response of a ping request. The
; response is formatted as text/plain with a 200 response code.
; Default Value: pong
;ping.response = pong

; The access log file
; Default: not set
; luroConenct : access log is useful for measuring CPU utilization percent of a request
; lower percent indicates either high mysql or curl calls
; if no curl calls, check the mysql cache and tune
access.log = log/$pool.access.log

;access.format = %R - %u %t %m %r%Q%q %s %f %{mili}d %{kilo}M %{total}C%%
access.format = %R - %u %t %m %{REQUEST_URI}e %r%Q%q %s %f %{mili}d %{kilo}M %{total}C%%

; The access log format.
; The following syntax is allowed
;  %%: the '%' character
;  %C: %CPU used by the request
;      it can accept the following format:
;      - %{user}C for user CPU only
;      - %{system}C for system CPU only
;      - %{total}C  for user + system CPU (default)
;  %d: time taken to serve the request
;      it can accept the following format:
;      - %{seconds}d (default)
;      - %{miliseconds}d
;      - %{mili}d
;      - %{microseconds}d
;      - %{micro}d
;  %e: an environment variable (same as $_ENV or $_SERVER)
;      it must be associated with embraces to specify the name of the env
;      variable. Some exemples:
;      - server specifics like: %{REQUEST_METHOD}e or %{SERVER_PROTOCOL}e
;      - HTTP headers like: %{HTTP_HOST}e or %{HTTP_USER_AGENT}e
;  %f: script filename
;  %l: content-length of the request (for POST request only)
;  %m: request method
;  %M: peak of memory allocated by PHP
;      it can accept the following format:
;      - %{bytes}M (default)
;      - %{kilobytes}M
;      - %{kilo}M
;      - %{megabytes}M
;      - %{mega}M
;  %n: pool name
;  %o: output header
;      it must be associated with embraces to specify the name of the header:
;      - %{Content-Type}o
;      - %{X-Powered-By}o
;      - %{Transfert-Encoding}o
;      - ....
;  %p: PID of the child that serviced the request
;  %P: PID of the parent of the child that serviced the request
;  %q: the query string
;  %Q: the '?' character if query string exists
;  %r: the request URI (without the query string, see %q and %Q)
;  %R: remote IP address
;  %s: status (response code)
;  %t: server time the request was received
;      it can accept a strftime(3) format:
;      %d/%b/%Y:%H:%M:%S %z (default)
;      The strftime(3) format must be encapsuled in a %{}t tag
;      e.g. for a ISO8601 formatted timestring, use: %{%Y-%m-%dT%H:%M:%S%z}t
;  %T: time the log has been written (the request has finished)
;      it can accept a strftime(3) format:
;      %d/%b/%Y:%H:%M:%S %z (default)
;      The strftime(3) format must be encapsuled in a %{}t tag
;      e.g. for a ISO8601 formatted timestring, use: %{%Y-%m-%dT%H:%M:%S%z}t
;  %u: remote user
;
; Default: "%R - %u %t \"%m %r\" %s"
;access.format = "%R - %u %t \"%m %r%Q%q\" %s %f %{mili}d %{kilo}M %C%%"

; The log file for slow requests
; Default Value: not set
; Note: slowlog is mandatory if request_slowlog_timeout is set
slowlog = log/$pool-slow.log

; The timeout for serving a single request after which a PHP backtrace will be
; dumped to the 'slowlog' file. A value of '0s' means 'off'.
; Available units: s(econds)(default), m(inutes), h(ours), or d(ays)
; Default Value: 0
; luroConnect : use for debugging slow access
; request_slowlog_timeout = 1

; The timeout for serving a single request after which the worker process will
; be killed. This option should be used when the 'max_execution_time' ini option
; does not stop script execution for some reason. A value of '0' means 'off'.
; Available units: s(econds)(default), m(inutes), h(ours), or d(ays)
; Default Value: 0
;request_terminate_timeout = 0

; Set open file descriptor rlimit.
; Default Value: system defined value
;rlimit_files = 1024

; Set max core size rlimit.
; Possible Values: 'unlimited' or an integer greater or equal to 0
; Default Value: system defined value
;rlimit_core = 0

; Chroot to this directory at the start. This value must be defined as an
; absolute path. When this value is not set, chroot is not used.
; Note: chrooting is a great security feature and should be used whenever
;       possible. However, all PHP paths will be relative to the chroot
;       (error_log, sessions.save_path, ...).
; Default Value: not set
;chroot =

; Chdir to this directory at the start.
; Note: relative path can be used.
; Default Value: current directory or / when chroot
;chdir = /var/www

; Redirect worker stdout and stderr into main error log. If not set, stdout and
; stderr will be redirected to /dev/null according to FastCGI specs.
; Note: on highloaded environement, this can cause some delay in the page
; process time (several ms).
; Default Value: no
;catch_workers_output = yes

; Clear environment in FPM workers
; Prevents arbitrary environment variables from reaching FPM worker processes
; by clearing the environment in workers before env vars specified in this
; pool configuration are added.
; Setting to "no" will make all environment variables available to PHP code
; via getenv(), $_ENV and $_SERVER.
; Default Value: yes
;clear_env = no

; Limits the extensions of the main script FPM will allow to parse. This can
; prevent configuration mistakes on the web server side. You should only limit
; FPM to .php extensions to prevent malicious users to use other extensions to
; exectute php code.
; Note: set an empty value to allow all extensions.
; Default Value: .php
;security.limit_extensions = .php .php3 .php4 .php5 .php7

; Pass environment variables like LD_LIBRARY_PATH. All $VARIABLEs are taken from
; the current environment.
; Default Value: clean env
;env[HOSTNAME] = $HOSTNAME
;env[PATH] = /usr/local/bin:/usr/bin:/bin
;env[TMP] = /tmp
;env[TMPDIR] = /tmp
;env[TEMP] = /tmp

; Additional php.ini defines, specific to this pool of workers. These settings
; overwrite the values previously defined in the php.ini. The directives are the
; same as the PHP SAPI:
;   php_value/php_flag             - you can set classic ini defines which can
;                                    be overwritten from PHP call 'ini_set'.
;   php_admin_value/php_admin_flag - these directives won't be overwritten by
;                                     PHP call 'ini_set'
; For php_*flag, valid values are on, off, 1, 0, true, false, yes or no.

; Defining 'extension' will load the corresponding shared extension from
; extension_dir. Defining 'disable_functions' or 'disable_classes' will not
; overwrite previously defined php.ini values, but will append the new value
; instead.

; Default Value: nothing is defined by default except the values in php.ini and
;                specified at startup with the -d argument
;php_admin_value[sendmail_path] = /usr/sbin/sendmail -t -i -f www@my.domain.com
;php_flag[display_errors] = off
php_admin_value[error_log] = /var/log/php-fpm/www-error.log
php_admin_flag[log_errors] = on
;php_admin_value[memory_limit] = 128M

; Set session path to a directory owned by process user
php_value[session.save_handler] = files

; Note : Important to make /var/lib/php/session writable by nginx user
php_value[session.save_path]    = /var/lib/php/session
php_value[soap.wsdl_cache_dir]  = /var/lib/php/wsdlcache

SSL Certificate

Getting a https certificate is now easy with letsEncrypt.

The nginx configuration enables http2, which is a newer version of the http protocol. Refer our blog article on advantage of http2 for Magento.

Mysql

There are many flavors available based on the original open source. We use percona mysql. Configurations may vary depend on the version but equivalent should be available.

Database performance depends on cache configuration based on available memory, a fast disk and your Magento indexing settings. Magento sites have a high percentage of reads to writes to the database – i.e. each product is browsed many times compared to the times you change them. As a result, mysql can perform really well as long as the cache hit rates are high. The following parameters determine the cache configuration.

query_cache_type = 1

; set query cache size to total RAM you can assign to query cache. Magento can use a lot of query cache
query_cache_size = 4G

; max size of an individual query that is cached. In Magento the category menu is often the largest query – ensure that is cached
query_cache_limit = 128M

; generally equal to the size of your database – ensures the database is stored in RAM
innodb_buffer_pool_size = 3G

The values depend on your website – such as number of categories displayed in the main menu or the length of the description of a product. The following queries help in determining the cache performance.

show status like 'qcache_hits'
show status like 'Qcache_inserts'
show status like 'Qcache_not_cached'
show status like 'Qcache_lowmem_prunes

Make special note of the parameter Qcache_lowmem_prunes that tells that a query was not cached as there was insufficient memory. This typically means an increase in query_cache_limit or query_cache_size may be required.

Redis Configuration for cache and session

Click here for sample configuration file

# By default Redis does not run as a daemon. Use 'yes' if you need it.
# Note that Redis will write a pid file in /var/run/redis.pid when daemonized.
daemonize yes

# When running daemonized, Redis writes a pid file in /var/run/redis.pid by
# default. You can specify a custom pid file location here.
pidfile /var/run/redis/redis.pid

# Accept connections on the specified port, default is 6379.
# If port 0 is specified Redis will not listen on a TCP socket.
# luroConnect - 6379 for Magento cache, 6380 for session
port 6379

# If you want you can bind a single interface, if the bind option is not
# specified all the interfaces will listen for incoming connections.
#
bind 0.0.0.0

# Specify the path for the unix socket that will be used to listen for
# incoming connections. There is no default, so Redis will not listen
# on a unix socket when not specified.
#
# unixsocket /tmp/redis.sock
# unixsocketperm 755

# Close the connection after a client is idle for N seconds (0 to disable)
timeout 0

# Set server verbosity to 'debug'
# it can be one of:
# debug (a lot of information, useful for development/testing)
# verbose (many rarely useful info, but not a mess like the debug level)
# notice (moderately verbose, what you want in production probably)
# warning (only very important / critical messages are logged)
loglevel notice

# Specify the log file name. Also 'stdout' can be used to force
# Redis to log on the standard output. Note that if you use standard
# output for logging but daemonize, logs will be sent to /dev/null
logfile /var/log/redis/redis.log

# To enable logging to the system logger, just set 'syslog-enabled' to yes,
# and optionally update the other syslog parameters to suit your needs.
# syslog-enabled no

# Specify the syslog identity.
# syslog-ident redis

# Specify the syslog facility.  Must be USER or between LOCAL0-LOCAL7.
# syslog-facility local0

# Set the number of databases. The default database is DB 0, you can select
# a different one on a per-connection basis using SELECT  where
# dbid is a number between 0 and 'databases'-1
# luroConnect : set databases to 1 - we use a separate redis process  for each type
databases 1

################################ SNAPSHOTTING  #################################
#
# Save the DB on disk:
#
#   save  
#
#   Will save the DB if both the given number of seconds and the given
#   number of write operations against the DB occurred.
#
#   In the example below the behaviour will be to save:
#   after 900 sec (15 min) if at least 1 key changed
#   after 300 sec (5 min) if at least 10 keys changed
#   after 60 sec if at least 10000 keys changed
#
#   Note: you can disable saving at all commenting all the "save" lines.

# save 900 1
# save 300 10
# save 60 10000
# luroConnect - for Magento disable save except for session
# without this a restart will cause recently added items to guest cart to disappear
# or a user to get logged out
# session save every minute 
# save 60
# FPC and Magento cache - do not ssave. Cost of saving in a busy site can be high
# redis restarts only on service start which is not often

# Compress string objects using LZF when dump .rdb databases?
# For default that's set to 'yes' as it's almost always a win.
# If you want to save some CPU in the saving child set it to 'no' but
# the dataset will likely be bigger if you have compressible values or keys.
rdbcompression yes

# The filename where to dump the DB
dbfilename dump.rdb

# The working directory.
#
# The DB will be written inside this directory, with the filename specified
# above using the 'dbfilename' configuration directive.
# 
# Also the Append Only File will be created inside this directory.
# 
# Note that you must specify a directory here, not a file name.
dir /var/lib/redis/

################################# REPLICATION #################################

# Master-Slave replication. Use slaveof to make a Redis instance a copy of
# another Redis server. Note that the configuration is local to the slave
# so for example it is possible to configure the slave to save the DB with a
# different interval, or to listen to another port, and so on.
#
# slaveof  

# If the master is password protected (using the "requirepass" configuration
# directive below) it is possible to tell the slave to authenticate before
# starting the replication synchronization process, otherwise the master will
# refuse the slave request.
#
# masterauth 

# When a slave lost the connection with the master, or when the replication
# is still in progress, the slave can act in two different ways:
#
# 1) if slave-serve-stale-data is set to 'yes' (the default) the slave will
#    still reply to client requests, possibly with out of data data, or the
#    data set may just be empty if this is the first synchronization.
#
# 2) if slave-serve-stale data is set to 'no' the slave will reply with
#    an error "SYNC with master in progress" to all the kind of commands
#    but to INFO and SLAVEOF.
#
slave-serve-stale-data yes

# Slaves send PINGs to server in a predefined interval. It's possible to change
# this interval with the repl_ping_slave_period option. The default value is 10
# seconds.
#
# repl-ping-slave-period 10

# The following option sets a timeout for both Bulk transfer I/O timeout and
# master data or ping response timeout. The default value is 60 seconds.
#
# It is important to make sure that this value is greater than the value
# specified for repl-ping-slave-period otherwise a timeout will be detected
# every time there is low traffic between the master and the slave.
#
# repl-timeout 60

################################## SECURITY ###################################

# Require clients to issue AUTH  before processing any other
# commands.  This might be useful in environments in which you do not trust
# others with access to the host running redis-server.
#
# This should stay commented out for backward compatibility and because most
# people do not need auth (e.g. they run their own servers).
# 
# Warning: since Redis is pretty fast an outside user can try up to
# 150k passwords per second against a good box. This means that you should
# use a very strong password otherwise it will be very easy to break.
#
# requirepass foobared

# Command renaming.
#
# It is possilbe to change the name of dangerous commands in a shared
# environment. For instance the CONFIG command may be renamed into something
# of hard to guess so that it will be still available for internal-use
# tools but not available for general clients.
#
# Example:
#
# rename-command CONFIG b840fc02d524045429941cc15f59e41cb7be6c52
#
# It is also possilbe to completely kill a command renaming it into
# an empty string:
#
# rename-command CONFIG ""

################################### LIMITS ####################################

# Set the max number of connected clients at the same time. By default there
# is no limit, and it's up to the number of file descriptors the Redis process
# is able to open. The special value '0' means no limits.
# Once the limit is reached Redis will close all the new connections sending
# an error 'max number of clients reached'.
#
# maxclients 128

# Don't use more memory than the specified amount of bytes.
# When the memory limit is reached Redis will try to remove keys
# accordingly to the eviction policy selected (see maxmemmory-policy).
#
# If Redis can't remove keys according to the policy, or if the policy is
# set to 'noeviction', Redis will start to reply with errors to commands
# that would use more memory, like SET, LPUSH, and so on, and will continue
# to reply to read-only commands like GET.
#
# This option is usually useful when using Redis as an LRU cache, or to set
# an hard memory limit for an instance (using the 'noeviction' policy).
#
# WARNING: If you have slaves attached to an instance with maxmemory on,
# the size of the output buffers needed to feed the slaves are subtracted
# from the used memory count, so that network problems / resyncs will
# not trigger a loop where keys are evicted, and in turn the output
# buffer of slaves is full with DELs of keys evicted triggering the deletion
# of more keys, and so forth until the database is completely emptied.
#
# In short... if you have slaves attached it is suggested that you set a lower
# limit for maxmemory so that there is some free RAM on the system for slave
# output buffers (but this is not needed if the policy is 'noeviction').
#
# maxmemory 

# MAXMEMORY POLICY: how Redis will select what to remove when maxmemory
# is reached? You can select among five behavior:
# 
# volatile-lru -> remove the key with an expire set using an LRU algorithm
# allkeys-lru -> remove any key accordingly to the LRU algorithm
# volatile-random -> remove a random key with an expire set
# allkeys->random -> remove a random key, any key
# volatile-ttl -> remove the key with the nearest expire time (minor TTL)
# noeviction -> don't expire at all, just return an error on write operations
# 
# Note: with all the kind of policies, Redis will return an error on write
#       operations, when there are not suitable keys for eviction.
#
#       At the date of writing this commands are: set setnx setex append
#       incr decr rpush lpush rpushx lpushx linsert lset rpoplpush sadd
#       sinter sinterstore sunion sunionstore sdiff sdiffstore zadd zincrby
#       zunionstore zinterstore hset hsetnx hmset hincrby incrby decrby
#       getset mset msetnx exec sort
#
# The default is:
#
# maxmemory-policy volatile-lru

# LRU and minimal TTL algorithms are not precise algorithms but approximated
# algorithms (in order to save memory), so you can select as well the sample
# size to check. For instance for default Redis will check three keys and
# pick the one that was used less recently, you can change the sample size
# using the following configuration directive.
#
# maxmemory-samples 3
# luroConnect - set maxmemory depending on use and requirement
# typically for Magento cache and session do not set but monitor
# for FPC set to the max available memory as it tends to grow
# if maxmemory is set, use allkeys-lru pollicy
maxmemory 2G
maxmemory-policy allkeys-lru

############################## APPEND ONLY MODE ###############################

# By default Redis asynchronously dumps the dataset on disk. If you can live
# with the idea that the latest records will be lost if something like a crash
# happens this is the preferred way to run Redis. If instead you care a lot
# about your data and don't want to that a single record can get lost you should
# enable the append only mode: when this mode is enabled Redis will append
# every write operation received in the file appendonly.aof. This file will
# be read on startup in order to rebuild the full dataset in memory.
#
# Note that you can have both the async dumps and the append only file if you
# like (you have to comment the "save" statements above to disable the dumps).
# Still if append only mode is enabled Redis will load the data from the
# log file at startup ignoring the dump.rdb file.
#
# IMPORTANT: Check the BGREWRITEAOF to check how to rewrite the append
# log file in background when it gets too big.

appendonly no

# The name of the append only file (default: "appendonly.aof")
# appendfilename appendonly.aof

# The fsync() call tells the Operating System to actually write data on disk
# instead to wait for more data in the output buffer. Some OS will really flush 
# data on disk, some other OS will just try to do it ASAP.
#
# Redis supports three different modes:
#
# no: don't fsync, just let the OS flush the data when it wants. Faster.
# always: fsync after every write to the append only log . Slow, Safest.
# everysec: fsync only if one second passed since the last fsync. Compromise.
#
# The default is "everysec" that's usually the right compromise between
# speed and data safety. It's up to you to understand if you can relax this to
# "no" that will will let the operating system flush the output buffer when
# it wants, for better performances (but if you can live with the idea of
# some data loss consider the default persistence mode that's snapshotting),
# or on the contrary, use "always" that's very slow but a bit safer than
# everysec.
#
# If unsure, use "everysec".

# appendfsync always
appendfsync everysec
# appendfsync no

# When the AOF fsync policy is set to always or everysec, and a background
# saving process (a background save or AOF log background rewriting) is
# performing a lot of I/O against the disk, in some Linux configurations
# Redis may block too long on the fsync() call. Note that there is no fix for
# this currently, as even performing fsync in a different thread will block
# our synchronous write(2) call.
#
# In order to mitigate this problem it's possible to use the following option
# that will prevent fsync() from being called in the main process while a
# BGSAVE or BGREWRITEAOF is in progress.
#
# This means that while another child is saving the durability of Redis is
# the same as "appendfsync none", that in pratical terms means that it is
# possible to lost up to 30 seconds of log in the worst scenario (with the
# default Linux settings).
# 
# If you have latency problems turn this to "yes". Otherwise leave it as
# "no" that is the safest pick from the point of view of durability.
no-appendfsync-on-rewrite no

# Automatic rewrite of the append only file.
# Redis is able to automatically rewrite the log file implicitly calling
# BGREWRITEAOF when the AOF log size will growth by the specified percentage.
# 
# This is how it works: Redis remembers the size of the AOF file after the
# latest rewrite (or if no rewrite happened since the restart, the size of
# the AOF at startup is used).
#
# This base size is compared to the current size. If the current size is
# bigger than the specified percentage, the rewrite is triggered. Also
# you need to specify a minimal size for the AOF file to be rewritten, this
# is useful to avoid rewriting the AOF file even if the percentage increase
# is reached but it is still pretty small.
#
# Specify a precentage of zero in order to disable the automatic AOF
# rewrite feature.

auto-aof-rewrite-percentage 100
auto-aof-rewrite-min-size 64mb

################################## SLOW LOG ###################################

# The Redis Slow Log is a system to log queries that exceeded a specified
# execution time. The execution time does not include the I/O operations
# like talking with the client, sending the reply and so forth,
# but just the time needed to actually execute the command (this is the only
# stage of command execution where the thread is blocked and can not serve
# other requests in the meantime).
# 
# You can configure the slow log with two parameters: one tells Redis
# what is the execution time, in microseconds, to exceed in order for the
# command to get logged, and the other parameter is the length of the
# slow log. When a new command is logged the oldest one is removed from the
# queue of logged commands.

# The following time is expressed in microseconds, so 1000000 is equivalent
# to one second. Note that a negative number disables the slow log, while
# a value of zero forces the logging of every command.
slowlog-log-slower-than 10000

# There is no limit to this length. Just be aware that it will consume memory.
# You can reclaim memory used by the slow log with SLOWLOG RESET.
slowlog-max-len 1024

################################ VIRTUAL MEMORY ###############################

### WARNING! Virtual Memory is deprecated in Redis 2.4
### The use of Virtual Memory is strongly discouraged.

# Virtual Memory allows Redis to work with datasets bigger than the actual
# amount of RAM needed to hold the whole dataset in memory.
# In order to do so very used keys are taken in memory while the other keys
# are swapped into a swap file, similarly to what operating systems do
# with memory pages.
#
# To enable VM just set 'vm-enabled' to yes, and set the following three
# VM parameters accordingly to your needs.

vm-enabled no
# vm-enabled yes

# This is the path of the Redis swap file. As you can guess, swap files
# can't be shared by different Redis instances, so make sure to use a swap
# file for every redis process you are running. Redis will complain if the
# swap file is already in use.
#
# The best kind of storage for the Redis swap file (that's accessed at random) 
# is a Solid State Disk (SSD).
#
# *** WARNING *** if you are using a shared hosting the default of putting
# the swap file under /tmp is not secure. Create a dir with access granted
# only to Redis user and configure Redis to create the swap file there.
vm-swap-file /tmp/redis.swap

# vm-max-memory configures the VM to use at max the specified amount of
# RAM. Everything that deos not fit will be swapped on disk *if* possible, that
# is, if there is still enough contiguous space in the swap file.
#
# With vm-max-memory 0 the system will swap everything it can. Not a good
# default, just specify the max amount of RAM you can in bytes, but it's
# better to leave some margin. For instance specify an amount of RAM
# that's more or less between 60 and 80% of your free RAM.
vm-max-memory 0

# Redis swap files is split into pages. An object can be saved using multiple
# contiguous pages, but pages can't be shared between different objects.
# So if your page is too big, small objects swapped out on disk will waste
# a lot of space. If you page is too small, there is less space in the swap
# file (assuming you configured the same number of total swap file pages).
#
# If you use a lot of small objects, use a page size of 64 or 32 bytes.
# If you use a lot of big objects, use a bigger page size.
# If unsure, use the default :)
vm-page-size 32

# Number of total memory pages in the swap file.
# Given that the page table (a bitmap of free/used pages) is taken in memory,
# every 8 pages on disk will consume 1 byte of RAM.
#
# The total swap size is vm-page-size * vm-pages
#
# With the default of 32-bytes memory pages and 134217728 pages Redis will
# use a 4 GB swap file, that will use 16 MB of RAM for the page table.
#
# It's better to use the smallest acceptable value for your application,
# but the default is large in order to work in most conditions.
vm-pages 134217728

# Max number of VM I/O threads running at the same time.
# This threads are used to read/write data from/to swap file, since they
# also encode and decode objects from disk to memory or the reverse, a bigger
# number of threads can help with big objects even if they can't help with
# I/O itself as the physical device may not be able to couple with many
# reads/writes operations at the same time.
#
# The special value of 0 turn off threaded I/O and enables the blocking
# Virtual Memory implementation.
vm-max-threads 4

############################### ADVANCED CONFIG ###############################

# Hashes are encoded in a special way (much more memory efficient) when they
# have at max a given numer of elements, and the biggest element does not
# exceed a given threshold. You can configure this limits with the following
# configuration directives.
hash-max-zipmap-entries 512
hash-max-zipmap-value 64

# Similarly to hashes, small lists are also encoded in a special way in order
# to save a lot of space. The special representation is only used when
# you are under the following limits:
list-max-ziplist-entries 512
list-max-ziplist-value 64

# Sets have a special encoding in just one case: when a set is composed
# of just strings that happens to be integers in radix 10 in the range
# of 64 bit signed integers.
# The following configuration setting sets the limit in the size of the
# set in order to use this special memory saving encoding.
set-max-intset-entries 512

# Similarly to hashes and lists, sorted sets are also specially encoded in
# order to save a lot of space. This encoding is only used when the length and
# elements of a sorted set are below the following limits:
zset-max-ziplist-entries 128
zset-max-ziplist-value 64

# Active rehashing uses 1 millisecond every 100 milliseconds of CPU time in
# order to help rehashing the main Redis hash table (the one mapping top-level
# keys to values). The hash table implementation redis uses (see dict.c)
# performs a lazy rehashing: the more operation you run into an hash table
# that is rhashing, the more rehashing "steps" are performed, so if the
# server is idle the rehashing is never complete and some more memory is used
# by the hash table.
# 
# The default is to use this millisecond 10 times every second in order to
# active rehashing the main dictionaries, freeing memory when possible.
#
# If unsure:
# use "activerehashing no" if you have hard latency requirements and it is
# not a good thing in your environment that Redis can reply form time to time
# to queries with 2 milliseconds delay.
#
# use "activerehashing yes" if you don't have such hard requirements but
# want to free memory asap when possible.
activerehashing yes

Varnish vs Redis FPC

Varnish sits at the edge and caches pages as they are served. Redis FPC sits inside the Magento application and stores the pages as they are served.
A Varnish application gets the variable components either via VCL or ajax. FPC being inside the application can use the block directly inside the page.

Magento 2 supports both varnish and FPC out-of-the-box. Varnish outperforms redis FPC but takes a bit more chutzpah to get working with https. Magento has a good explanation on the setup at https://devdocs.magento.com/guides/v2.2/config-guide/varnish/config-varnish.html

Setting up the hosting user

Magento suggests using a 2-user system for hosting. What this means is that the php files are not writable by the web server or the php process. Create a user that we will call as the hosting user and add nginx to the hosting user’s group

useradd -G nginx <hostinguser>

Setup directory www with Magento.

Ensure media and var folders have permissions for group write but other folders do not

cd /home/;/www
find . -type d -exec chmod 750 {} \;
find . -type f -exec chmod 640 {} \;
find ./media -type d -exec chmod 770 {} \;
find ./media -type f -exec chmod 660 {} \;
find ./var -type d -exec chmod 770 {} \;
find ./var -type f -exec chmod 660 {} \;

Conclusion

We have presented with detailed configuration files in a DIY guide to Magento hosting. If you need to setup multiple servers, the basic idea is similar some configurations may have to change.

Feel free to post your comments and we will improve this guide.

We can analyze your site for free

Schedule a call

Not happy with your website performance and want an expert to look at it?

  • We will analyze your site using public information.
  • We will ask you to give us a 1 day web server log file.
  • We will try to identify what steps if any you should take to improve your sites performance goals.

Watch our webinar on performance and scaling in Magento

Its free!

Using analogy to vehicular traffic we explain performance and scaling in Magento.
Key takeaways

  • Know how to compare hosting options
  • Importance of good code
  • How to scale
  • Tuning Magento