
Improving headless / 
PWA performance 
Pradip Shah| Co-Founder



Did you register at luroconnect.fm?
Magento Open Source is at a cross roads today - it is not clear if 
Adobe will continue to support or there will be forks (such as 
MageOS) to the main source. Will Hyva be the saviour it appears 
to be? What do merchants want in a platform? What do they not 
want from one?

The luroConnect podcast will interview agency owners, 
developers, plugin vendors and merchants. Our aim is to see what 
is explore how Magento Open Source can be the preferred 
platform for eCommerce.

Register and we will inform you when the first episode goes live.

http://luroconnect.fm/


The promise

Blazing fast performance that 
legacy technologies cannot give



The delivery

Legacy M1

PWA Studio



The myth of 
legacy



Legacy UI technology was not at standstill

Adam Wathan
authored 

tailwindcss

Willem Wigman
authored 

Hyva

Caleb Porzio
authored
alpine.js

• Replaced Magento Luma Theme
• Improved Google Page Speed scores
• Componentized UI development



On the fly page reorganization

● Advanced JS bundling (aka magepack) and
Critical CSS inline / bundling

○ Offline check to decide the bundle size
○ Config file added to build

● On the fly page reorganization
○ Analyze each page on the fly and reorganize the page for inlining / bundling
○ Simple ideas earlier were to put js in footer (cloudflare rocketloader)
○ Later ideas (nitrogen) do even more so LCP improves
○ First cache miss may take more time

■ Add a Full Page Cache and you get amazing results





www.kalkifashion.com
ü Magento 2.4
ü Hyva
ü Nitrogen Full Page Cache



But …

● Cache miss does too many 
things

● Hard to personalize
○ Need a framework even to throw 

a custom message
○ Custom content is even more 

difficult



New PWA Promise
A Platform to do more with less



But how do you fix this?



And this …

ScandiPWA

9 products in the list



Lesson : PWA is not magic

● Just because the information about PWA is it is “lightning fast” it is not magic.
It has the potential of being lightning fast

● All your basic rules apply
○ Make sure you know your screen layout and do not insert odd sized banners to make the 

screen move up and down
○ LCP is the largest paint you do on the screen – do it early
○ Use as few fonts as possible

● And then a few more
○ Think of landing page AND navigation
○ Think of how google search console and google analytics will perceive your speed



Understand underlying technology

● Are you depending on REST or Graphql?
● REST (in Magento) does not send back cacheable results

○ REST may send back far bigger data than you want
○ May need to write custom REST calls to add pagination, etc
○ You can cache the results only based on TTL
○ Will not automatically invalidate



Custom React
Magento REST API
Custom REST API calls

REST Results cached in 
middleware with no
automatic invalidations

rendertron SSR



Magento has adopted Graphql

● ScandiPWA and PWAStudio use graphql
● Magento Graphqls (until 2.4.5)

○ Are in user session
○ Follow same rules for varnish caching as frontend urls
○ Can be extended for custom queries by writing php



POST vs GET graphql
• 2 POST graphqls with the same parameters
• Getting cart info to show in minicart
• Comes before important UI for home page
• POST urls cannot be cached and are locked by 

session
• Each graphql takes 3.5 seconds – but chained so 

take 7 seconds
Before any content is displayed

•
Use POST for queries – only for mutations



Magento Graphql are not all cacheable

● PWAStudio generates many non cacheable graphql calls
Non cacheable graphql
• Magento (php) sends a

header to varnish to hint if a
graphql is cacheable

• If the ttl is set to 0 or Cache 
control header says “no-
store, no-cache” varnish will
not cache

• If cacheable, Magento sends 
tags that will be used for 
invalidation – if content of 
the graphql would change it 
will be automatically 
removed from cache



PWA Studio : many graphqls per component



Cache more in varnish : what is “not cacheable”

● Review each non varnish cacheable by default request
○ Hint : If varnish does not cache, the graphql will have set-cookie

● Decide if and for how long it can be cached in varnish
● Check the url, Payload and the response
Example :
GET 
graphql?query=query+getRootCategoryId%7BstoreConfig%7Bid+root_category_id+__typename%7D%7
D&operationName=getRootCategoryId&variables=%7B%7D

Thanks to
Siddharthsinh Rathod

Cinovic



Cache more in varnish : what is “not cacheable”

Thanks to
Siddharthsinh Rathod

Cinovic



Cache more in varnish : what is “not cacheable”

Thanks to
Siddharthsinh Rathod

Cinovic



Caching in varnish? 
Cache warmer for important graphqls



Analyze slow graphqls

● Many custom graphqls can have bad mysql queries
● How to analyze a graphql query

○ Step 0 : make sure mysql query cache is turned off (mariadb, mysql 5.7)
○ Step 1 : Identify the query graphql
○ Step 2 : enable db debug
○ Step 3 : access the graphql
○ Step 4 : delete the log file
○ Step 5 : access the graphql again
○ Step 6 : disable db debug
○ Step 7 : Analyze the db debug log

Thanks to
Siddharthsinh Rathod

Cinovic



Analyze slow graphqls (contd)

● Fresh Arrivals products graphql was analyzed
○ Result set :

425108 rows for 10k products and took 17 seconds
21MB dataset size

● A Category (graphql was custom)
○ Result set :

259361 rows for 7488 products and took 4 seconds
13MB dataset size

● In each case, the result set returned by graphql was much smaller
● Graphql has pagination and range – the query should also carry this info

Thanks to
Siddharthsinh Rathod

Cinovic



Magento Graphql : 2.4.5 upgrade will help

● JWT Tokens for authorization
● Disable graphql session for authorization
● Session usage has been removed from http header

No more chaining, but
● varnish will not cache requests with authorization headers
● Analyzing what can be cached will be important
● Yet don’t use POST when you can use GET



Cache graphql in browser

● So, if a graphql result is unlikely to change, why not cache in browser?
● Varnish allows such manipulation of the headers
● Identify the graphqls that can be cached in the browser and the ttl
● Note : if you cache in browser, you cannot clear the cache



Cache graphql in browser (contd)

● Fancier Candidates
○ Mega Menu graphql – 86400 (1 day)
○ Category (PLP) graphql – 300 (5 minutes) – so if from PDP a back button will be faster

Risk : what if currency changes? It does not vary on cookies or headers
Better such logic is kept in frontend

● Graphqls that are not good candidates for caching in browser
○ Cart
○ Currency



UI Build 

● Webpack : ids should be hashes not version
(Standard builds already do this)

● Decide on the bundle size and number of bundles
Less bundles => small change results in large invalidation



UI Build 



UI Build : Cookie free domains

● Simple change in webpack can load static resources from a cookie free 
domain

● Cookie free domains mean you don’t need to pass entire 
site through a CDN

samyakk.com
Vue Storefront (vsf1)



Thanks
Pradip Shah
Co-Founder, luroConnect

pradip@luroconnect.com| @luroconnect


